Posts Tagged ‘EcmaScript5’

JavaScript Object Creation Patterns

July 6, 2013

What are the differences in creating an object by way of simple function invocation, vs using a constructor vs creating an object using the object literal notation vs function application?

To make sure we’re all on the same page, a quick refresher of what an object actually is in JavaScript…

What is an object in JavaScript?

  • An object is an unordered mutable keyed collection of properties. Each property is either a named data property, a named accessor property, or an internal property. I discussed JavaScript properties in depth here.
  • The ECMAScript language types are Undefined, Null, Boolean, Number, String and Object.
  • The simple types (primitives) of JavaScript are members of one of the following built-in types: Undefined, Null, Boolean (true and false), Number, and String.
  • All other values are objects. Function, String, Number, RegExp etc all indirectly inherit Object via their prototype property, which has a hidden link to Object. Try not to get confused about the fact that we can have for example a String primitive which isn’t an object and we can have a String object by calling the String constructor. See the ES3 and ES5 spec 15.5.
  • All objects have a prototype. I explain JavaScript prototypes here.
  • An object created from a function has a “prototype” property (an Object) (seen below in the red box) (whether invoked as a constructor or function). It has a property which is a constructor function (seen below in blue box) and a hidden property (a link) to the actual Object.prototype (seen below in the pink box).
  • An object created by means of an object literal inherits straight from (is linked to) Object.prototype. So the “prototype” property doesn’t exist, but there are other ways to access it. Problem is… how to access it varies from browser to browser.

internals of a function object

internalsOfAfunctionobject

Every function is also created with two additional hidden properties: the functions context and the code that implements the functions behaviour.

Object creation

On invocation, every function receives 2 hidden parameters. this and the arguments array (which provides access to all the arguments that were supplied to the function on invocation). The value assigned to this is determined by how the function was invoked. We’ll look at this in the following sections.

Object creation via function invocation

Pros

Best suited for creation of one-time on-demand objects.

Cons

If a function is not the property of an object literal, when you invoke it, this will be bound to the global object. Often not what you’re expecting. A mistake in the design of the language. As you can see in the following code, the this of the local scope (kimsGlobalFunction)

aFunctionInItsOwnScope

correct this is global

Now here you can see when we invoke the local function, the this is bound to the global object. That’s a mistake in the language. When innerFunction is invoked, the this of that function is also bound to the global object.


InsideaFunctionsOwnScope

Line 18 above alerts undefined, because that doesn’t belong to the global object.


NotCorrectThisIsGlobal

Object creation via constructor

What is a constructor in JavaScript?

It’s a function, nothing more. It’s how it is invoked that determines it as a constructor.

What does it look like?

(function () {
   // Create a constructor function called MyFunc.
   var MyFunc = function (aString) {
      // The following variable is private.
      var privateString = aString;
      // Access it with a privileged method.
      this.publicString = function () {
         return privateString;
      }
   };

   // Prefixing with new means we're now using the function as a constructor.
   // So we use PascalCase rather than camelCase, so users of MyFunc don't invoke without the new prefix.
   var myFunc = new MyFunc('sponge bob');
   alert(myFunc.publicString());
}());

Pros

Great for re-use. Creating a constructor and assigning members to it’s prototype, mean that every time you create an object from the constructor using the new prefix, the new object uses the same prototypes members. This can save big time on memory if you are creating many objects with the constructor.

Cons

Con 1

What happens when someone invokes a constructor function directly without the new prefix?
The this of the function will not be bound to the new object, but rather to the global object.
so instead of augmenting your new myFunc object, you will be clobbering the global object.
myFunc‘s this would refer to the global object

What counter measures do we have at our disposal to make sure this doesn’t happen?
Naming conventions.
Enforcing new is used with JavaScript constructor functions? pg 45 – 46 of Stoyan Stefanov’s JavaScript Patterns book addresses this. Problem is, those patterns all have significant flaws. So, you really need to weigh up the pros and cons. Maturity of your development team should also play a role in your decision here. It may be worth taking a safer route and employing an object literal if developers are likely to omit the new prefix on an intended constructor invocation.

Object creation via object literal

What does it look like?

Line 12 executes the creation and return of an object with a property called publicString.

// In its simplest form:
var myObject = {};

(function () {
   var myFunc = (function () {
      // private members
      var privateString = 'Spong Bob';
      // implement the public part
      return {
         publicString: function () {
            return privateString;
         }
      };
   }());

   alert(myFunc.publicString());
}());

Pros

Pro 1

The this is bound to where you’d expect it to be (adherence to Principle of least astonishment (POLA).
When a function is stored as a property of an object literal, it’s a method. When a method is invoked with this pattern, this is bound to the object. In the below section of code, when execution is on line 05

(function kims() {

   var myObjectLiteral = {
      myProp: 'a property value',
      myFunc: function () {
         alert(this.myProp);
      }
   };
   myObjectLiteral.myFunc();
}());

Here you can see that the value of myFunc‘s this argument is in fact the myObjectLiteral.

this value

In which case because a function is an object, and a variable is a property, then the same must apply to invoking a function of a function? No. The vital word here is “literal”… As above… “When a function is stored as a property of an object literal

Pro 2

Best suited for creation of one-time on-demand objects.

Cons

As with storing members in a function, be it a function you intend using new with (a constructor), or just by invoking the function, members will not be shared between instances of the prototype. This means that if you create 200’000 myObj object literals as I did in the test above, you will have 200’000 separate add functions in memory. The same goes for adding the add function to the constructor without adding it to the constructors prototype.

Object creation via function application

There is one more object creation pattern. Function application. I’ve discussed this in depth in the following three posts. Check them out.

https://blog.binarymist.net/2012/04/29/extending-currying-and-monkey-patching-part-1/

https://blog.binarymist.net/2012/05/14/extending-currying-and-monkey-patching-part-2/

https://blog.binarymist.net/2012/05/27/extending-currying-and-monkey-patching-part-3/

Speed Testing

Object creation is significantly slower using constructors with no prototype than it is using object literals. Now I did some more testing around this and got some surprising results. Using Chromium, V8 is doing some severe optimisation with object creation using constructors. The more members I added to my test constructor and object literal, the more it became noticeable.

var runTestTimes = function (iterations) {
   var test = function () {
      var constructorIterations = 1000000;
      var objLiteralIterations = 1000000;
      var constructorStart;
      var objLiteralStart;
      var constructorTime;
      var objLiteralTime;
      var MyFunc = function () {
         var simpleString = 'simple string';
         var add = function () {
            return 1+1;
         };
         add();
      };

      constructorStart = new Date();
      while (constructorIterations--) {
         var myFunc = new MyFunc();
      }
      constructorTime = new Date - constructorStart;

      objLiteralStart = new Date();
      while (objLiteralIterations--) {
         var myObj = {
            simpleString: 'simple string',
            add: function () {
               return 1+1;
            }
         };
         myObj.add();
      }
      objLiteralTime = new Date - objLiteralStart;

      console.log('constructor: ' + constructorTime + ' object literal: ' + objLiteralTime);
   };
   while (iterations--) {
      test();
   }
};
runTestTimes(10);

Yields the following results:

constructor: 32 object literal: 19
constructor: 25 object literal: 18
constructor: 25 object literal: 17
constructor: 25 object literal: 18
constructor: 26 object literal: 17
constructor: 25 object literal: 18
constructor: 25 object literal: 17
constructor: 25 object literal: 17
constructor: 25 object literal: 18
constructor: 25 object literal: 17

By simply adding another function to the constructor and the object literal, the results in chromium swung to favour the constructor.

// add this function to the constructor.
var subtract = function () {
   return 1-1;
};

// add this function to the object literal.
subtract: function () {
   return 1-1;
}

Reducing the number of iterations from 1’000’000 to 200’000 because the same code run in Firefox crashed it… Yielded the following in Chromium:

constructor: 5 object literal: 6
constructor: 3 object literal: 5
constructor: 3 object literal: 5
constructor: 2 object literal: 5
constructor: 3 object literal: 4
constructor: 2 object literal: 5
constructor: 2 object literal: 5
constructor: 3 object literal: 4
constructor: 3 object literal: 5
constructor: 2 object literal: 5

and yielded the following using the Firefox JavaScript engine SpiderMonkey:

constructor: 701 object literal: 21
constructor: 729 object literal: 17
constructor: 705 object literal: 17
constructor: 721 object literal: 18
constructor: 727 object literal: 20
constructor: 723 object literal: 18
constructor: 726 object literal: 18
constructor: 727 object literal: 20
constructor: 728 object literal: 17
constructor: 736 object literal: 18

When I moved the add and subtract functions from the constructor to the constructors prototype, the speed results in chromium didn’t yield any noticeable difference. in Firefox

the average went from 854ms to 836ms. The change looked like the following:

var MyFunc = function () {
   var simpleString = 'simple string';
};

MyFunc.prototype.add = function () {
   return 1+1;
};

MyFunc.prototype.subtract = function () {
   return 1-1;
};

I decided to create some tests on jsperf to provide repeatable results. What’s interesting is you don’t have to change a lot to get completely different results, so if you’re concerned about performance, it really pays to test it. I think the tests on jsperf are probably a bit more truthful. here they are.

Summary

There are many more pros and cons of each invocation pattern. I’ve listed the ones that I think are the most important to understand. There is no right or wrong pattern to use for everything. Consider your target audience and what the majority of them may be using in terms of browsers. Consider the maturity of your development team. Benchmark the different approaches, but don’t fall into the trap of micro optimisation, or optimising for a single browser or JavaScript engine unless that’s all your users are using. Choose the pattern that provides the most wins for the given situation. I didn’t test in I.E, but as you can see, the JavaScript engines I did test with do things very differently.

Tools like

  1. Google Page Speed
  2. Google Speed Tracer
  3. Chromiums Profiler

Will help you focus on the areas that matter most.

There are of course many other areas to look at when it comes to “is your app delivering an acceptable user experience”.
Take a few steps back from your situation. You only have so much time. Spend it wisely.
There are many good wins to be had for little cost. Yahoos YSlow has a bunch.
Many books also address this in depth:

  1. Even Faster Web Sites by Steve Souders
  2. High Performance Web sites by Steve Souders
  3. High Performance JavaScript by Nicholas Zakas

There is also a good read on how V8’s full and optimising JIT compilers optimise JavaScript.
I’ve found that most of it’s intuitive and if your using good design and coding principles, in “most” cases your safe, but it’s still worth the read.

  1. As developers we try not to change classes on the fly. deleting or adding properties to hot objects in JavaScript negatively effects the optimising compiler.
  2. We don’t use floats when we only need ints.
  3. In JavaScript, use Arrays when the property names are small sequential integers. Otherwise, use an object. JavaScript Arrays are not like arrays in most other languages. They are simply objects with some array like characteristics.
  4. Assign your array elements as early as possible. 
  5. Don’t delete elements in an array, or leave elements empty.

JavaScript is a very dynamic language. Use its dynamic nature cautiously if you want performant code. Most importantly, favour read time convenience over write time. Your code is going to be read many more times than it’s written.

At this stage, V8 is way ahead of the other JavaScript engines in terms of performance. Node.js uses the V8 engine and enjoys the same incredible performance.

Inheritance

Prototypal inheritance is more OO than classical inheritance.
With prototypal inheritance, a child object only needs to inherit the parent objects specific properties pertinent to it.
With classical inheritance, a child object inherits all the parent objects members, even the ones that it should have no knowledge of.

Hopefully most of us already know to favour composition (aggregation) over inheritance. Be it classical or prototypal. I’ve explained some techniques of how this can be done effectively in JavaScript in the above three posts.

Angus Croll is a master at explaining these concepts, so be sure to check out his post here.

Even the Java creator James Gosling says he’d do away with classes or classical inheritance if he could write the language again.
Inheritance can be an anti pattern as it’s tight coupling. Sub classes inherit everything no matter what. Prototypal is opt-in.
One of the Fluent Conference talks by Eric Elliott on why we should steer away from classical inheritance goes to say the following:

Classical Inheritance is Obsolete
“Those who are unaware they are walking in darkness will never seek the light.” —Bruce Lee
In “Design Patterns”, the Gang of Four recommend two important principles of object oriented design:
1) Program to an interface, not an implementation.
2) Favour object composition over class inheritance.
In a sense, the second principle could follow from the first, because classical inheritance exposes the parent class to all child classes. The child classes are all programming to an implementation rather than an interface. Classical inheritance breaks the principle of encapsulation, and tightly couples the child classes to its ancestors.
Why is the seminal work on Object Oriented design so distinctly anti-inheritance? Because classical inheritance causes several problems:
Tight coupling. Classical inheritance is the tightest coupling available in OO design. Descendant classes have an intimate knowledge of their ancestor classes.
Inflexible hierarchies. Single parent hierarchies are rarely capable of describing all possible use cases. Eventually, all hierarchies are “wrong” for new uses—a problem that necessitates code duplication.
Complicated multiple inheritance. It’s often desirable to inherit from more than one parent. That process is inordinately complex and its implementation is inconsistent with the process for single inheritance, which makes it harder to read and understand.
Brittle architecture. Because of tight coupling, it’s often difficult to refactor a class with the “wrong” design, because much existing functionality depends on the existing design.
The Gorilla / Banana problem. Often there are parts of the parent that you don’t want to inherit. Subclassing allows you to override properties from the parent, but it doesn’t allow you to select which properties you want to inherit.

Additional Sources:
ECMA-262 edition 5.1
JavaScript The Good Parts.
JavaScript The Definitive Guide.
Eric Elliott’s talk at the fluent conference May 28-30, 2013.

Advertisement

JavaScript Properties

October 2, 2012

In ECMAScript 5 we now have two distinct kinds of properties.

  1. Data properties
  2. Accessor properties

A property is a named collection of attributes.
value: any JavaScript value
writable: boolean
configurable: boolean, common for both Data and Accessor
enumerable: boolean, common for both Data and Accessor
get: a function that returns a value
set: a function that takes an argument as its value

configurable

Any attempts to delete the property or change its (writable, configurable, or enumerable) attributes will fail if set to false.
if using strict mode, we get a run time error.
if not using strict mode, the behaviour is as it was with ES3,
the deletion attempt is ignored.
If set to false:
-It can not be re-set to true.
-We can change the value and writable attributes, but writable only from true to false.

enumerable

The property will be enumerated over when a for-in loop is encountered if set to true.
if using strict mode, it’s as if the property doesn’t exist, it’s ignored.

In ES5,

  • a default property descriptor; if the property is defined the old fashioned way, without using Object.defineProperty,
    the boolean attributes will all default to true.
  • A default property descriptor; if the property is defined using Object.defineProperty and the boolean attribute values not specified,
    the boolean attributes will all default to false.

I was wondering about this, as I had heard conflicting stories.
IMO this follows the Principle of least astonishment (POLA)

var obj1 = {};
var obj1PropertyDesc;
var obj2 = {};
var obj2PropertyDesc;

Object.defineProperty(obj1, 'propOnObj1', {
   value: 'value of propOnObj1' //,
   // writable: false,
   // enumerable: false,
   // configurable: false,
});

obj1PropertyDesc = Object.getOwnPropertyDescriptor(obj1, 'propOnObj1');

// obj1PropertyDesc {
//    configurable: false,
//    enumerable: false,
//    value: "value of propOnObj1",
//    writable: false
// }

obj2.propOnObj2 = 'value of propOnObj2';

obj2PropertyDesc = Object.getOwnPropertyDescriptor(obj2, 'propOnObj2');

// obj2PropertyDesc {
//    configurable: true,
//    enumerable: true,
//    value: "value of propOnObj2",
//    writable: true
// }

So in general

Properties declared the old ES3 way are configurable (can be deleted).
Properties declared using Object.defineProperty; by default are not configurable (can not be deleted).
See edge cases below.

The delete operator is used to remove a property from an object.
It does not touch properties in the prototype chain.
If you have a prototype that has a property with the same name, it will now be used when your code references the derived object’s property that no longer exists.

var objLiteral = {
   aProperty: 'value of super property'
}

var anObject = Object.create(objLiteral); // create is an ES5 method, but easy enough to replicate for ES3 implementations

anObject.aProperty = 'value of derived property';

anObject.aProperty  // 'value of derived property'
delete anObject.aProperty;
anObject.aProperty  // 'value of super property'

Edge cases

JavaScript Patterns pg 12 states “Implied globals created without var (regardless if created inside functions) can be
deleted.”
Thanks to Angus Croll for pointing this out as untrue.

obj1 = 'kims global property';
var obj1PropertyDesc;
var obj2PropertyDesc;

obj1PropertyDesc = Object.getOwnPropertyDescriptor(this, 'obj1');

// obj1PropertyDesc {
//    configurable: true,
//    enumerable: true,
//    value: "kims global property",
//    writable: true,
// }

(function (){
   obj2 = 'kims global property declared within function scope';
}());

obj2PropertyDesc = Object.getOwnPropertyDescriptor(this, 'obj2');

// obj2PropertyDesc {
//    configurable: false,
//    enumerable: true,
//    value: "kims global property declared within function scope",
//    writable: true
// }

delete obj2;
// Nope, obj2 was not deleted.
// turn strict mode on and we get the following error:
// Uncaught SyntaxError: Delete of an unqualified identifier in strict mode.

When you declare a global,
you are actually defining a property of the global object.
If you use the var keyword on that global, you are still creating a property.
That property is non-configurable (can not be deleted with the delete operator).
Only object properties with the configurable option set to true can be deleted.
Nothing else can be deleted.
Variables which are properties that we can’t access their property descriptor, can never be deleted.

var obj1 = {};
var obj1PropertyDesc;

obj1PropertyDesc = Object.getOwnPropertyDescriptor(this, 'obj1');

// obj1PropertyDesc {
//    configurable: false
//    enumerable: true
//    value: Object
//    writable: true
// }

There are a couple of notable internal properties that are found on all ES3 and ES5 objects.
[[Get]] and [[Put]].
The Ecma specs enclose internal properties in double square brackets as a convention only.
In ES3 [[Get]] and [[Put]] are used to return and set the internal [[Value]] property.
According to the Ecma5 spec, the internal [[Get]] and [[Put]] properties appear to do the same thing, although it’s not stated explicitly.
This may just be an oversight of the spec.

Accessor Properties

All the examples so far have been showing data properties.
By default properties are data properties unless they define a getter and/or setter,
in which case they are defined as accessor properties.
There are two attributes that are distinct to accessor properties.
get and set.
Both of which allow a method (and only a method) to be assigned to them to get or set respectively.

JavaScript getter error

  • Internally the getter calls the functions internal [[Call]] method with no arguments.
  • Internally the setter calls the functions internal [[Call]] method with an arguments list containing the assigned value as its sole argument.
    The setter may but is not required to have an effect on the value returned by subsequent calls to the properties internal [[Get]] method.

So these attributes may or may not leverage the internal [[Get]] and [[Put]] properties that are found in ES3 and ES5 on all objects.
You can in fact define only a getter (readonly), or only a setter (write-only) accessor if you so choose.

Defining accessor properties literally:

var testObj = {
   // An ordinary data property
   dataProp: 'value',

   // An accessor property defined as a pair of functions
   // get accessorProp() { return this.dataProp; },
   set accessorProp(value) { this.dataProp = value; }
};

testObj.accessorProp = 'an updated string';
alert(testObj.accessorProp); // undefined
alert(testObj.dataProp);  // an updated string

Can we create a data (default) property and then change it to be an accessor property?

var testObj = {}; // Start with no properties at all
// Add a nonenumerable data property x with value 1.
Object.defineProperty(testObj, 'x', { value : 1,
writable: true,
enumerable: false,
configurable: true});

// Check that the property is there but is non-enumerable
alert(testObj.x); // 1

// check that we can't enumerate the testObj
alert(Object.keys(testObj)); // returns an empty array of strings

// Now modify the property x so that it is read-only
Object.defineProperty(testObj, 'x', { writable: false });

// Try to change the value of the property
testObj.x = 2;
// Fails silently or throws TypeError in strict mode
alert(testObj.x); // 1

// The property is still configurable, so we can change its value like this:
Object.defineProperty(testObj, 'x', { value: 2 });

alert(testObj.x); // 2

// what happens if we change configurable to false?
Object.defineProperty(testObj, 'x', { configurable: false });
Object.defineProperty(testObj, 'x', { value: 2.5 }); // Uncaught TypeError: Cannot redefine property: x

// Now change x from a data property to an accessor property
// providing we haven't set configurable to false as above.
Object.defineProperty(testObj, 'x', {
   get: function() {
      return 0;
   }
});

alert(testObj.x); // 0

Yip.

Ok, so what does a property descriptor of an Accessor Property look like?

var objWithMultipleProperties;
var objWithMultiplePropertiesDescriptor;

objWithMultipleProperties = Object.defineProperties({}, {
   x: { value: 1, writable: true, enumerable:true, configurable:true },
   y: { value: 1, writable: true, enumerable:true, configurable:true },
   r: {
      get: function() {
         return Math.sqrt(this.x*this.x + this.y*this.y)
      },
      enumerable:true,
      configurable:true
   }
});

objWithMultiplePropertiesDescriptor = Object.getOwnPropertyDescriptor(objWithMultipleProperties, 'r');
// objWithMultiplePropertiesDescriptor {
//    configurable: true,
//    enumerable: true,
//    get: function () {
//       // other members in here
//    },
//    set: undefined,
//   // ...
// }

The Global Object

When the JavaScript interpreter starts (or whenever a web browser loads a new page),
it creates a new global object and gives it an initial set of properties that define:
• global properties like undefined, Infinity, and NaN
• global functions like isNaN(), parseInt(), and eval()
• constructor functions like Date(), RegExp(), String(), Object(), and Array()
• global objects like Math and JSON

delete undefined;  // not deleted
delete Infinity;   // not deleted
delete NaN;        // not deleted
delete isNaN;      // deleted
delete parseInt;   // deleted
delete eval;       // deleted
delete Date;       // deleted
delete RegExp;     // deleted
delete String;     // deleted
delete Object;     // deleted
delete Array;      // deleted
delete Math;       // deleted
delete JSON;       // deleted
undefined = 'kims undefined'; // nonassignable
Infinity = 'kims infinity';   // nonassignable
NaN = 'kims nan';             // nonassignable
  1. Why are undefined, Infinity and NaN not removed?
  2. Are they non-configurable?
  3. Why are they non-assignable?
  4. How do we test this?
  5. Are they constants?
  6. Are Infinity, NaN and undefined reserved words?

I’ll answer these questions shortly.

ES3 properties

According to the standard
8.6 “Each property consists of a name, a value and a set of attributes”.
8.6.1 A property can have zero or more attributes from the following set:

These attributes along with others (see ES3 spec) are reserved for internal use.

Attribute Description
ReadOnly The property is a read-only property.
Attempts by ECMAScript code to write to the property will be ignored.
(Note, however, that in some cases the value of a property with the ReadOnly attribute may change over time because of actions taken by the host environment; therefore “ReadOnly” does not mean “constant and unchanging”!)
DontEnum The property is not to be enumerated by a for-in enumeration
DontDelete Attempts to delete the property will be ignored.
Internal Internal properties have no name and are not directly accessible via the property accessor operators. This means the property is not accessible to the ECMAScript program.
How these properties are accessed is implementation specific.
How and when some of these properties are used is specified by the language specification.

These property attribute values can not be changed
An interesting Internal property is the [[Prototype]]
There are a number of ways to access the internal [[Prototype]] property indirectly.
I’ve detailed them in my post on prototypes here.

More on ES5 properties

writable, enumerable and configurable replace the ES3 property attributes: ReadOnly, DontEnum, DontDelete.
The property attributes and their values define the property descriptor object (including Data or Accessor properties and those that apply to both (enumerable and configurable)).

The property attributes can be manually managed by the:
Object.defineProperty and Object.defineProperties methods
Object.getOwnPropertyDescriptor

var myObj = {};

Object.defineProperty(myObj, 'propOnMyObj', {
   value: 'property descriptor',
   writable: true,    // ReadOnly = false in ES3
   enumerable: false, // DontEnum = true in ES3
   configurable: true // DontDelete = false in ES3
});

console.log(myObj.propOnMyObj); // 'property descriptor'

// getOwnPropertyDescriptor is the only way to get the properties attributes.
// They don't exist as visible properties on the property (other than for setting them as above),
// they're stored internally in the ECMAScript engine.
var myPropertyDescriptor = Object.getOwnPropertyDescriptor(myObj, 'propOnMyObj');

console.log(myPropertyDescriptor.enumerable); // false
console.log(myPropertyDescriptor.writable);   // true
// etc.

getOwnPropertyDescriptor

There’s lots of new methods defined in ES5.

Now, back to the six questions we had above.

  1. Why are undefined, Infinity and NaN not removed?
    Because  their property descriptors configurable attribute is set to false.
  2. Are they non-configurable?
    Yes, as above.
  3. Why are they non-assignable?
    Because their property descriptors writable attribute is set to false.
  4. How do we test this?
    NaN
    Number
    global Infinity property
    undefined
  5. Are they constants?
    Effectively, yes.
  6. Are Infinity, NaN and undefined reserved words?
    No. Avoid using their names to remove ambiguity.

ES3
Infinity read/write (the value can be changed). Holds positive infinity.
Number is a property on the global object, which has readonly properties Infinity and NaN.
NaN read/write (the value can be changed).
undefined

ES5
Infinity (well… POSITIVE_INFINITY) is a property on the global Number property with the value Infinity
We now also have NEGATIVE_INFINITY with the value –Infinity
Number
Infinity is also declared directly on the global object.
NaN is a property on the global object with the value NaN
undefined is a property on the global object with the value (you guessed it) undefined.
These are all constants now.

Important differences between Properties and Variables

Variables are properties, but not vice versa.

The VariableObject in ES3 is called the VariableEnvironment in ES5.
Can be seen in the specs.
Not sure why they changed what they called it.

Each execution context (be it global or any function) has an associated VariableObject.
Variables (and functions) created within a given context are bound as properties of that context’s VariableObject.
Even function parameters are added as properties of the VariableObject.
Discussed in depth in:
ECMAScript3 spec under “10 Execution Contexts”
ECMAScript5 spec under “10.3 Execution Contexts” onwards
This is why we can access global variables as properties of the global object…
Because that’s what they are.

  • The global object is created before control enters any execution context.
  • The global object is the same as the global contexts VariableObject.
  • In the HTML DOM; the window property of the global object is the global object.

Now variables of functions are similar, but we can’t access them as properties.
Why?…
ECMAScript has an Activation Object.
When control enters the execution context of a function, an activation object is created and associated with the execution context.
The activation object is initialised with:

  1. The this value
  2. an arguments property (referred to as a binding in ES5 spec) that has the DontDelete attribute (configurable set to false in ES5).

The activation object is then used as the VariableObject.
We can access members of the activation object but not the activation object itself,
which is why we can’t access the members as properties.
Further details in:
ECMAScript3 spec under “10.2 Entering An Execution Context”
ECMAScript5 spec under “10.4 Establishing an Execution Context”

Feature Detection (Yes, Including JavaScript)

I know this is not property specific, but it was something I thought noteworthy.

There’s a library that looks to have potential for JavaScript feature detection.
“has.js”
This should be useful for detecting what your users browsers are capable of EcmaScript wise.
The project lead is Peter Higgins (Dojo Toolkit project lead).
Has a good sized group of committers.
May have potential to be a better Modernizr.
The source is here.
Explanation of has.js features here.

Additional References:

Succinct explanation of Variables vs Properties in JavaScript

EcmaScript5 Objects and Properties

Slideshow by Doug Crockford on ES5’s new parts

Dmitry Soshnikov’s elaborations on the Ecma standards:

http://dmitrysoshnikov.com/ecmascript/es5-chapter-1-properties-and-property-descriptors/

http://dmitrysoshnikov.com/ecmascript/chapter-7-2-oop-ecmascript-implementation/

http://dmitrysoshnikov.com/ecmascript/chapter-2-variable-object/